4.6 Article

Zn(O,OH) layers in chalcopyrite thin-film solar cells:: Valence-band maximum versus composition -: art. no. 053702

Journal

JOURNAL OF APPLIED PHYSICS
Volume 98, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2034650

Keywords

-

Ask authors/readers for more resources

Zn(O,OH) layers deposited by the ion layer gas reaction (ILGAR) technique have the potential to replace the conventionally used CdS buffer layer in Cu(In(1-X)GaX)(SYSe(1-Y))(2)-based thin-film solar cells. To avoid stability issues, the fraction of metastable Zn(OH)(2) should be reduced in the final buffer layer. However, hydroxide-poor or -free ZnO buffers result in noncompetitive devices. We have therefore investigated the impact of different oxide/hydroxide ratios on the electronic band alignment at the absorber/buffer heterointerface. The surface composition as well as the position of the valence-band maximum (VBM) of respective ILGAR-Zn(O,OH) samples was determined by photoelectron spectroscopy. The position of the conduction-band minimum (CBM) was estimated using optical band gaps determined from optical reflection/transmission measurements. From the comparison of these VBM and CBM values with the respective values of the absorber surface, predictions are made in terms of valence- and conduction-band offsets at the crucial absorber/buffer interface. The results are compared with previous findings, and the drawn conclusions are correlated with the performance of respective solar cell devices. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available