4.6 Article

Band-structure-corrected local density approximation study of semiconductor quantum dots and wires

Journal

PHYSICAL REVIEW B
Volume 72, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.125325

Keywords

-

Ask authors/readers for more resources

This paper presents results of ab initio accuracy thousand atom calculations of colloidal quantum dots and wires using the charge patching method. We have used density functional theory under local density approximation (LDA), and we have corrected the LDA bulk band structures by modifying the nonlocal pseudopotentials, so that their effective masses agree with experimental values. We have systematically studied the electronic states of group III-V (GaAs, InAs, InP, GaN, AlN, and InN) and group II-VI (CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, and ZnO) systems. We have also calculated the electron-hole Coulomb interactions in these systems. We report the exciton energies as functions of the quantum dot sizes and quantum wire diameters for all the above materials. We found generally good agreements between our calculated results and experimental measurements. For CdSe and InP, the currently calculated results agree well with the previously calculated results using semiempirical pseudopotentials. The ratios of band-gap-increases between quantum wires and dots are material-dependent, but a majority of them are close to 0.586, as predicted by the simple effective-mass model. Finally, the size dependence of 1S(e)-1P(e) transition energies of CdSe quantum dots agrees well with the experiment. Our results can be used as benchmarks for future experiments and calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available