4.7 Article

STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 289, Issue 3, Pages C708-C716

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00544.2004

Keywords

small intestine; cystic fibrosis transmembrane conductance regulator; membrane traffic; phosphorylation

Funding

  1. NIDDK NIH HHS [1K08DK02846] Funding Source: Medline

Ask authors/readers for more resources

The cystic fibrosis transmembrane conductance regulator (CFTR) is critical to cAMP- and cGMP-activated intestinal anion secretion and the pathogenesis of secretory diarrhea. Enterotoxins released by Vibrio cholerae (cholera toxin) and Escherichia coli ( heat stable enterotoxin, or STa) activate intracellular cAMP and cGMP and signal CFTR on the apical plasma membrane of small intestinal enterocytes to elicit chloride and fluid secretion. cAMP activates PKA, whereas cGMP signals a cGMP-dependent protein kinase (cGKII) to phosphorylate CFTR in the intestine. In the jejunum, cAMP also regulates CFTR and fluid secretion by insertion of CFTR from subapical vesicles to the surface of enterocytes. It is unknown whether cGMP signaling or phosphorylation regulates the insertion of CFTR associated vesicles from the cytoplasm to the surface of enterocytes. We used STa, cell-permeant cGMP, and cAMP agonists in conjunction with PKG and PKA inhibitors, respectively, in rat jejunum to examine whether 1) cGMP and cGK II regulate the translocation of CFTR to the apical membrane and its relevance to fluid secretion, and 2) PKA regulates cAMP-dependent translocation of CFTR because this intestinal segment is a primary target for toxigenic diarrhea. STa and cGMP induced a greater than fourfold increase in surface CFTR in enterocytes in association with fluid secretion that was inhibited by PKG inhibitors. cAMP agonists induced a translocation of CFTR to the cell surface of enterocytes that was prevented by PKA inhibitors. We conclude that cAMP and cGMP-dependent phosphorylation regulates fluid secretion and CFTR trafficking to the surface of enterocytes in rat jejunum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available