4.5 Article

The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae)

Journal

AMERICAN JOURNAL OF BOTANY
Volume 92, Issue 9, Pages 1503-1512

Publisher

WILEY
DOI: 10.3732/ajb.92.9.1503

Keywords

Baker's law; Brassicaceae; cedar glades; inbreeding; mating system; pollen limitation; reproductive assurances; self-incompatibility

Categories

Ask authors/readers for more resources

Self-compatibility and adaptations to self-fertilization are often found in plant populations at the periphery of species' ranges or on islands. Self-compatibility may predominate in these environments because it provides reproductive assurance when pollinators or availability of mates limits seed production. This possibility was studied in Leavenworthia alabamica, a flowering plant endemic to the southeastern United States. Populations at the center of the species' range retain sporophytic self-incompatibility, but peripheral populations are smaller, self-compatible, and have adaptations for self-fertilization. A reciprocal-transplant experiment was designed to test whether there is pollen limitation of seed set and to examine its strength in central and peripheral populations. Self-compatible genotypes produced more fruit and 17-22% more seed than self-incompatible genotypes in all environments, suggesting that the transition to self-compatibility may be favored by natural selection in all populations inhabited by L. alabamica. Sequence analyses demonstrated that two peripheral populations have 90-100% reductions in genetic variation, consistent with the effects of small population size or historical bottlenecks. Although pollen limitation of seed set occurs in all environments, self-compatibility may evolve at the periphery in L. alabamica because the benefits of reproductive assurance are influenced by Population size or bottlenecks following extinction and colonization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available