4.3 Article

Depolarizing effect of GABA in rod bipolar cells of the mouse retina

Journal

VISION RESEARCH
Volume 45, Issue 20, Pages 2659-2667

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.visres.2005.03.020

Keywords

retina; bipolar cell; GABA receptors; chloride transporters

Ask authors/readers for more resources

Gamma-amino butyric acid (GABA) has been characterized as inhibitory neurotransmitter through chloride mediated channels in the adult nervous system. However, using gramicidin perforated patch-clamp recordings from rod bipolar cells dissociated from retinas of adult mice, we find that GABA is capable of inducing cell depolarization. Currents mediated by GABA(A) and GABA(C) receptors were further isolated by the use of GABA receptor specific blockers. In rod bipolar cells dissociated from the mouse retina, activation of GABAA receptors located at the cell dendrites induces ionic currents which show a reversal potential of -33 mV. However, local activation of GABA(C) receptors located at the axon terminal induces ionic currents with a reversal potential of -60 mV. According to Nernst equation, the dendrites of rod bipolar cells of the mouse retina would have a high intracellular chloride concentration ([Cl-](i)) and there must be an intracellular gradient in [Cl-](i), being the [Cl-](i) more elevated in the dendrites than in the axon terminal. The depolarizing effect of GABA at the dendrites of rod bipolar cells may contribute to the lateral interaction in the mammalian retina, thereby enhancing visual discrimination of stimuli input. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available