4.6 Article

Stability and stabilization of relative equilibria of dumbbell bodies in central gravity

Journal

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
Volume 28, Issue 5, Pages 833-842

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.10546

Keywords

-

Ask authors/readers for more resources

A dumbbell-shaped rigid body can be used to represent certain large spacecraft or asteroids with bimodal mass distributions. Such a dumbbell body is modeled as two identical mass particles connected by a rigid, massless link. Equations of motion for the five degrees of freedom of the dumbbell body in a central gravitational field are obtained. The equations of motion characterize three orbit degrees of freedom, two attitude degrees of freedom, and the coupling between them. The system has a continuous symmetry due to a cyclic variable associated with the angle of right ascension of the dumbbell body. Reduction with respect to this symmetry gives a reduced system with four degrees of freedom. Relative equilibria, corresponding to circular orbits, are obtained from these reduced equations of motion; the stability of these relative equilibria is assessed. It is shown that unstable relative equilibria can be stabilized by suitable attitude feedback control of the dumbbell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available