4.0 Article

A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment

Journal

IIE TRANSACTIONS
Volume 37, Issue 9, Pages 827-842

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07408170590969852

Keywords

-

Ask authors/readers for more resources

The evaluation process of conceptual design alternatives in a new product development environment is a critical point for companies who operate in fast-growing markets. Various methods exist that are able to successfully carry out this difficult and time-consuming process. One of these methods, the Analytic Hierarchy Process (AHP) has been widely used to solve multiple-criteria decision-making problems (i.e., concept evaluation, equipment selection) in both academic research and in industrial practice. However, due to vagueness and uncertainty in the decision-maker's judgment, a crisp, pair-wise comparison with a conventional AHP may be unable to accurately capture the decision-maker's judgment. Therefore, fuzzy logic is introduced into the pair-wise comparison in the AHP to compensate for this deficiency in the conventional. AHP. This is referred to as fuzzy AHP. In this paper, a fuzzy AHP method is used to reduce a set of conceptual design alternatives by eliminating those whose scores (or weights) are smaller than a predetermined constant value obtained under certain circumstances. Then, simulation analysis is integrated with the fuzzy AHP method, and the hybrid method is used to help the decision-makers (product engineers or managers) evaluate the remaining alternatives from the fuzzy AHP method. A real-life manufacturing system is used as the testbed for the proposed techniques. Finally, the results of both techniques, fuzzy AHP and simulation, are used for Preference Ratio analysis to reach to the final alternative.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available