4.7 Article

New general tools for constrained geometry optimizations

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 1, Issue 5, Pages 1029-1037

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct0500949

Keywords

-

Ask authors/readers for more resources

A modification of the constrained geometry optimization method by Anglada and Bofill (Anglada, J. M.; Bofill, J. M. J. Comput. Chem. 1997, 18, 992-1003) is designed and implemented. The changes include the choice of projection, quasi-line-search, and the use of a Rational Function optimization approach rather than a reduced-restricted-quasi-Newton-Raphson method in the optimization step. Furthermore, we show how geometrical constrains can be implemented in an approach based on nonreclunclant curvilinear coordinates avoiding the inclusion of the constraints in the set of redundant coordinates used to define the internal coordinates. The behavior of the new implementation is demonstrated in geometry optimizations featuring single or multiple geometrical constraints (bond lengths, angles, etc.), optimizations on hyperspherical cross sections (as in the computation of steepest descent paths), and location of energy minima on the intersection subspace of two potential energy surfaces (i.e. minimum energy crossing points). In addition, a novel scheme to determine the crossing point geometrically nearest to a given molecular structure is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available