4.7 Article

The motions of the hard X-ray sources in solar flares: Images and statistics

Journal

ASTROPHYSICAL JOURNAL
Volume 630, Issue 1, Pages 561-572

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/431918

Keywords

acceleration of particles; sun : flares; sun : magnetic fields; sun : X-rays, gamma rays

Ask authors/readers for more resources

On the basis of the Yohkoh Hard X-Ray Telescope (HXT) data, we present a statistical study of different types of the hard X-ray (HXR) source motions during solar flares. A total of 72 flares that occurred from 1991 September to 2001 December have been analyzed. In these flares, we have found 198 intense HXR sources that are presumably the chromospheric footpoints of flare loops. The average velocity V and its uncertainty sigma were determined for these sources. For 80% of them, the ratio of V to 3 sigma is larger than 1, strongly suggesting that (1) the moving sources are usually observed rather than stationary ones and (2) the regular displacements of HXR sources dominate their chaotic motions. After co-alignment of the HXT images with the photospheric magnetograms, we have conducted an additional analysis of 31 flares out of 72 and distinguished between three main types of the footpoint motions. Type I consists of the motions preferentially away from and nearly perpendicular to the neutral line (NL). About 13% of flares (4 out of 31) show this pattern. In type II, the sources move mainly along the NL in antiparallel directions. Such motions have been found in 26% of flares (8 out of 31). Type III involves a similar pattern as type II, but all the HXR sources move in the same direction along the NL. Flares of this type constitute 35% (11 out of 31). In 26% of flares (8 out of 31) we observed more complicated motions that can be described as a combination of the basic types or some modification of them. For the most interesting flares, the results of analysis are illustrated and interpretation is suggested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available