4.0 Article Proceedings Paper

Postulated boundaries and differential fate in the developing rostral hindbrain

Journal

BRAIN RESEARCH REVIEWS
Volume 49, Issue 2, Pages 179-190

Publisher

ELSEVIER
DOI: 10.1016/j.brainresrev.2004.12.031

Keywords

rhombomere 1; isthmus; rostral hindbrain; cerebellum

Categories

Ask authors/readers for more resources

The vertebrate brain is progressively regionalized during development in a process whereby a precise spatio-temporal arrangement of gene expression patterns and resulting intercellular and intracellular signals drive patterning, growth, morphogenesis, and final fates, thus producing ordered species-specific differentiation of each territory within a shared morphotype. Before genetic and molecular biology tools started to be used to uncover the underlying mechanisms that control morphogenesis, knowledge on brain development largely depended on descriptive analysis and experimental embryology. The first approach allowed us to know how the brain develops but not why. The second provided insights into inductive and field histogenetic phenomena, requiring causal explanation. In this review, we focused on the regionalization of the rostral hindbrain, defined as isthmus plus rhombomere 1, which is the least understood part of the hindbrain. We addressed what is known about the formation of boundaries in this area and the fate of diverse neuroepithelial portions. We introduced to this end some fate-mapping data recently obtained in our laboratory. Starting from the background of pioneering morphological studies and available fate mapping data, we establish correlation with current knowledge about how morphogens, transcription factors, or other signaling molecules map onto particular territories, from where they may drive morphogenctic interactions that generate final fates step by step. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available