4.6 Article

Increasing mitochondrial substrate-level phosphorylation can rescue respiratory growth of an ATP synthase-deficient yeast

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 35, Pages 30751-30759

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M501831200

Keywords

-

Ask authors/readers for more resources

In a previous study we have identified Fmc1p, a mitochondrial protein involved in the assembly/stability of the yeast F0F1-ATP synthase at elevated temperatures. The Delta fmc1 mutant was shown to exhibit a severe phenotype of very slow growth on respiratory substrates at 37 degrees C. We have isolated ODC1 as a multicopy suppressor of the fmc1 deletion restoring a good respiratory growth. Odc1p expression level was estimated to be at least 10 times higher in mitochondria isolated from the Delta fmc1/ODC1 transformant as compared with wild type mitochondria. Interestingly, ODC1 encodes an oxodicarboxylate carrier, which transports alpha-ketoglutarate and alpha-ketoadipate or any other transported tricarboxylic acid cycle intermediate in a counter-exchange through the inner mitochondrial membrane. We show that the suppression of the respiratory-growth-deficient fmc1 by the overexpressed Odc1p was not due to a restored stable ATP synthase. Instead, the rescuing mechanism involves an increase in the flux of tricarboxylic acid cycle intermediate from the cytosol into the mitochondria, leading to an increase in the alpha-ketoglutarate oxidative decarboxylation, resulting in an increase in mitochondrial substrate-level-dependent ATP synthesis. This mechanism of metabolic bypass of a defective ATP synthase unravels the physiological importance of intramitochondrial substrate-level phosphorylations. This unexpected result might be of interest for the development of therapeutic solutions in pathologies associated with defects in the oxidative phosphorylation system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available