4.8 Article

Breakdown of one-parameter scaling in quantum critical scenarios for high-temperature copper-oxide superconductors

Journal

PHYSICAL REVIEW LETTERS
Volume 95, Issue 10, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.107002

Keywords

-

Ask authors/readers for more resources

We show that if the excitations which become gapless at a quantum critical point also carry the electrical current, then a resistivity linear in temperature, as is observed in the copper-oxide high-temperature superconductors, obtains only if the dynamical exponent z satisfies the unphysical constraint, z < 0. At fault here is the universal scaling hypothesis that, at a continuous phase transition, the only relevant length scale is the correlation length. Consequently, either the electrical current in the normal state of the cuprates is carried by degrees of freedom which do not undergo a quantum phase transition, or quantum critical scenarios must forgo this basic scaling hypothesis and demand that more than a single-correlation length scale is necessary to model transport in the cuprates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available