4.7 Article

Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat

Journal

CIRCULATION RESEARCH
Volume 97, Issue 5, Pages 488-495

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000180663.42594.aa

Keywords

vascular smooth muscle cell proliferation; gene transfer; SERCA2a; calcium signaling; nuclear factor of activated T-cells

Funding

  1. NHLBI NIH HHS [HL-057623, HL 071763] Funding Source: Medline

Ask authors/readers for more resources

Proliferation of vascular smooth muscle cells (VSMC) is a primary cause of vascular disorders and is associated with major alterations in Ca2+ handling supported by loss of the sarco/endoplasmic reticulum calcium ATPase, SERCA2a. To determine the importance of SERCA2a in neointima formation, we have prevented loss of its expression by adenoviral gene transfer in a model of balloon injury of the rat carotid artery. Two weeks after injury, the intima/media ratio was significantly lower in SERCA2a-infected than in injured noninfected or injured beta-galactosidase-infected carotids (0.29 +/- 0.04 versus 0.89 +/- 0.19 and 0.72 +/- 0.14, respectively; P < 0.05), and was comparable to that observed in control carotids (0.21 +/- 0.03). The pathways leading to proliferation were analyzed in serum-stimulated VSMC. Forced expression of SERCA2a arrested cell cycle at the G1 phase and prevented apoptosis. SERCA2a inhibits proliferation through inactivation of calcineurin ( PP2B) and its target transcription factor NFAT ( nuclear factor of activated T-cells) resulting in lowering of cyclin D1 and pRb levels. By using NFAT-competing peptide VIVIT, we showed that NFAT activity is strongly required to promote VSMC proliferation. In conclusion, we provide the first evidence that increasing SERCA2a activity inhibits VSMC proliferation and balloon injury-induced neointima formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available