4.7 Article

Gel electrolyte membranes derived from co-continuous polymer blends

Journal

POLYMER
Volume 46, Issue 19, Pages 7896-7908

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2005.06.079

Keywords

polymer gel electrolytes; interpenetrating polymer blend networks; vinylidene fluoride copolymers

Ask authors/readers for more resources

Polymer gel electrolyte membranes were prepared by first casting films of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and poly(ethylene glycol) (PEG) monomethacrylate and dimethacrylate macromonomers. Polymerization of the macromonomers initiated by UV-irradiation then generated solid films having phase-separated morphologies with a microporous PVDF-HFP phase embedded in PEG-grafted polymethacrylates. Gel electrolyte membranes were finally prepared by allowing the films to take up solutions of LiTFSI in gamma-butyrolactone (gamma-BL). The PEG-grafted polymethacrylate in the membranes was found to host the largest part of the liquid electrolyte, giving rise to a highly swollen ionic conductive phase. Results by FTIR spectroscopy showed that the Li+ ions preferentially interacted with the ether oxygens of the PEG chains. The properties of the membranes were studied as a function of the ratio of PVDF-HFP to PEG-grafted polymethacrylate, as well as the degree of crosslinking, LiTFSI concentration, and liquid electrolyte content. The self-supporting and elastic gel membranes had ionic conductivities of 10(-3) S cm(-1) and a mechanical storage modulus in the range of 2.5 MPa in the tension mode at room temperature. Variation of the salt concentration showed the greatest effect on the membrane properties. (c) 2005 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available