4.6 Article

Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 36, Pages 31368-31377

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M501546200

Keywords

-

Funding

  1. NHLBI NIH HHS [R37 HL049103-13, R37 HL049103-12, R37 HL049103, R37 HL049103-14, R37 HL049103-11] Funding Source: Medline

Ask authors/readers for more resources

Using an improved chromatin immunoprecipitation assay designed to increase immunoprecipitation efficiency, we investigated changes in RNA polymerase II (Pol II) density and carboxyl-terminal domain (CTD) phosphorylation during transcription of the cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and several androgen-responsive genes in LNCaP cells. As generally observed in higher eukaryotes, promoter proximal pausing of Pol II appeared to occur on the PPIA and GAPDH genes, but apparently not on the androgen-responsive genes PSA and NKX3-1. Unlike some mammalian studies, we found that the CTD of Pol II in promoter regions contains little phosphorylation at Ser-2 of the heptad repeat, suggesting that Ser-2 phosphorylation is not involved in polymerase exit from the promoter region. In contrast, Pol II near the promoter displayed high levels of Ser-5 phosphorylation, which decreased as polymerase transcribed beyond the promoter region of the PPIA and GAPDH genes. However, total Pol II levels appear to decrease as much or more, suggesting that Ser-5 phosphorylation is maintained. In support of this conclusion, a phosphoserine 5-specific antibody quantitatively immunoprecipitates native hyperphosphorylated Pol II, suggesting that all polymerase with phosphoserine 2 also contains phosphoserine 5. Given reports indicating that phosphoserine 5 is present during elongation in yeast, our data suggest that gross changes in CTD phosphorylation patterns during transcription may be more conserved in yeast and humans than recognized previously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available