4.5 Review

Bridging advanced glycation end product, receptor for advanced glycation end product and nitric oxide with hormonal replacement/estrogen therapy in healthy versus diabetic postmenopausal women: A perspective

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbamcr.2005.03.010

Keywords

AGE; RAGE; estrogen; HRT; ET; diabetes; NO; ROS; postmenopausal women

Funding

  1. NHLBI NIH HHS [HL67281] Funding Source: Medline

Ask authors/readers for more resources

Cardiovascular diseases (CVD) are the most significant cause of death in postmenopausal women. The loss of estrogen biosynthesis with advanced age is suggested as one of the major causes of higher CVD in postmenopausal women. While some studies show beneficial effects of estrogen therapy (ET)/hormonal replacement therapy (HRT) in the cardiovascular system of healthy postmenopausal women, similar studies in diabetic counterparts contradict these findings. In particular, ET/HRT in diabetic postmenopausal women results in a seemingly detrimental effect on the cardiovascular system. In this review, the comparative role of estrogens is discussed in the context of CVD in both healthy and diabetic postmenopausal women in regard to the synthesis or expression of proinflammatory molecules like advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGEs), inducible nitric oxide synthases (iNOS) and the anti-inflammatory endothelial nitric oxide synthases (eNOS). The interaction of AGE-RAGE signaling with molecular nitric oxide (NO) may determine the level of reactive oxygen species (ROS) and influence the overall redox status of the vascular microenvironment that may further determine the ultimate outcome of the effects of estrogens on the CVD in healthy versus diabetic women. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available