4.7 Article

Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae

Journal

AQUATIC TOXICOLOGY
Volume 74, Issue 3, Pages 229-241

Publisher

ELSEVIER
DOI: 10.1016/j.aquatox.2005.05.014

Keywords

atrazine; fish larvae; Sciaenops ocellatus; behavior; respirometry; metabolism; endocrine disrupting chemical

Ask authors/readers for more resources

Red drum larvae (Sciaenops ocellatus) were exposed to environmentally realistic and sublethal levels of the herbicide atrazine (2-chloro-4-ethylamin-6-isopropylamino-S-triazine) to evaluate its effects on ecologically critical traits: growth, behavior, survival potential, and resting respiration rate. Settlement size larvae (7 turn total length) were given an acute exposure of atrazine at 0, 40, and 80 mu g l(-1) for 4 days. Tests of 96 h survival confirmed that these naturally occurring concentrations were sublethal for red drum larvae. Growth, routine swimming, antipredator responses to artificial and actual predators, and resting respiration rate were monitored I and 3 days after onset of exposure. Atrazine exposure significantly reduced growth rate. Atrazine-exposed larvae also exhibited significantly higher routine swimming speeds, swam in more convoluted paths, and were hyperactive. Responses to artificial and actual predators were not affected by atrazine exposure nor were resting respiration rates. The higher rate of travel (86% higher in atrazine-treated larvae) resulted in higher predicted encounter rates with prey (up to 71%) and slow moving predators (up to 63%). However, hyperactivity and faster active swimming speeds of exposed larvae indicated that naturally occurring sublethal levels of atrazine will result in an elevated rate of energy utilization (doubling the total metabolic rate), which is likely to increase the risk of death by starvation. Moreover, atrazine effects on growth will prolong the larval period, which could reduce the juvenile population by as much as 24%. We conclude that environmentally realistic levels of atrazine induce behavioral and physiological effects on fish larvae that would compromise their survival expectations. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available