4.8 Article

Targeting of the FYVE domain to endosomal membranes is regulated by a histidine switch

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0503900102

Keywords

phosphoinositide; early endosome antigen 1

Funding

  1. Biotechnology and Biological Sciences Research Council [BBS/B/10714] Funding Source: researchfish
  2. Biotechnology and Biological Sciences Research Council [BBS/B/10714] Funding Source: Medline
  3. Wellcome Trust [071684] Funding Source: Medline

Ask authors/readers for more resources

Specific recognition of phosphatidylinositol 3-phosphate [PtdIns(3)P] by the FYVE domain targets cytosolic proteins to enclosomal membranes during key signaling and trafficking events within eukaryotic cells. Here, we show that this membrane targeting is regulated by the acidic cellular environment. Lowering the cytosolic pH enhances PtdIns(3)P affinity of the FYVE domain, reinforcing the anchoring of early endosome antigen 1 (EEA1) to enclosomal membranes. Reversibly, increasing the pH disrupts phosphoinositide binding and leads to cytoplasmic redistribution of EEA1. pH dependency is due to a pair of conserved His residues, the successive protonation of which is required for PtdIns(3)P head group recognition as revealed by NMR. Substitution of the His residues abolishes PtdIns(3)P binding by the FYVE domain in vitro and in vivo. Another PtdIns(3)P-binding module, the PX domain of Vam7 and P40(phox) is shown to be pH-independent. This provides the fundamental functional distinction between the two phosphoinositide-recognizing domains. The presented mode of FYVE regulation establishes the unique function of FYVE proteins as low pH sensors of PtdIns(3)P and reveals the critical role of the histidine switch in targeting of these proteins to enclosomal membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available