4.7 Article

Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of held synapses

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 37, Pages 8482-8497

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1848-05.2005

Keywords

auditory brainstem; MNTB; development; glutamate transporters; desensitization; AMPA and NMDA receptors; gamma-DGG; diffusion modeling; group II mGluR; mGluR8; TBOA

Categories

Funding

  1. NCRR NIH HHS [RR16858] Funding Source: Medline
  2. NEI NIH HHS [EY09534, R01 EY009534] Funding Source: Medline
  3. NIDCD NIH HHS [F32 DC006768, R01 DC004274] Funding Source: Medline
  4. Wellcome Trust [071179] Funding Source: Medline

Ask authors/readers for more resources

We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1 mu m LY341495 (2S-2-amino2-(1S, 2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid)], suggesting that elevated resting glutamate concentration specifically activates group II and group III mGluRs. Using mGluR subtype-specific agonists and antagonists, we determined that increased glutamate activates presynaptic mGluR2/3 and mGluR8 receptors but not mGluR4, although this receptor is present. Surprisingly, in older animals (P16-P18), transporter blockade had no effect on EPSC amplitude because of a developmental downregulation of group II/III mGluR activation in rats and mice. In contrast to other CNS synapses, we observed no effect of transporter blockade on EPSC decay kinetics, although expression of glutamate transporters was strong in nearby glial processes at both P9 and P17. Finally, using a low-affinity AMPA receptor antagonist (gamma-D-glutamylglycine), we show that desensitization occurs at P8-P10 but is absent at P16-P18, even during trains of high-frequency (100-300 Hz) stimulation. We suggest that diffusion and transporter activation are insufficient to clear synaptically released glutamate at immature calyces, resulting in significant desensitization. Thus, mGluRs may be expressed in the immature calyx to help limit glutamate release. In the more mature calyx, there is a far smaller diffusional barrier attributable to the highly fenestrated synaptic terminal morphology, so AMPA receptor desensitization is avoided and mGluR-mediated inhibition is not necessary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available