4.7 Article

Brainstem and forebrain contributions to the generation of learned motor behaviors for song

Journal

JOURNAL OF NEUROSCIENCE
Volume 25, Issue 37, Pages 8543-8554

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1668-05.2005

Keywords

brainstem; respiration; vocalization; motor control; birdsong; timing

Categories

Funding

  1. NIDCD NIH HHS [R01 DC006102] Funding Source: Medline

Ask authors/readers for more resources

Brainstem nuclei have well established roles in generating nonlearned rhythmic behaviors or as output pathways for more complex, forebrain-generated behaviors. However, the role of the brainstem in providing information to the forebrain that is used to initiate or assist in the control of complex behaviors is poorly understood. In this study, we used electrical microstimulation in select nuclei of the avian song system combined with recordings of acoustic and respiratory output to examine how forebrain and brainstem nuclei interact in the generation of learned vocal motor sequences. We found that brief stimulation in the forebrain nuclei HVC (used as a proper name) and RA (robust nucleus of the arcopallium) caused a short-latency truncation of ongoing song syllables, which ultimately led to a cessation of the ongoing motor sequence. Stimulation within the brainstem inspiratory-related nucleus paraambigualis, which receives input from RA and projects back to HVC via the thalamus, caused syllable truncations and interruptions similar to those observed in HVC and RA. In contrast, stimulation in the tracheosyringal portion of the hypoglossal nucleus, which innervates the syrinx (the avian vocal organ) but possesses no known projections back into the song system, did not cause any significant changes in the song motor pattern. These findings suggest that perturbation of premotor activity in any nucleus within the recurrent song system motor network will disrupt the ongoing song motor sequence. Given the anatomical organization of this network, our results are consistent with a model in which the brainstem respiratory nuclei form an integral part of the song motor programming network by providing timing signals to song control nuclei in the forebrain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available