4.8 Article

Protein kinase Cε is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy

Journal

CANCER RESEARCH
Volume 65, Issue 18, Pages 8366-8371

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-0553

Keywords

-

Categories

Funding

  1. NCI NIH HHS [R01CA77612, P50CA97248, P30CA46592] Funding Source: Medline
  2. NCRR NIH HHS [M01-RR00042] Funding Source: Medline

Ask authors/readers for more resources

Tumor metastasis is the major cause of morbidity and mortality in patients with breast cancer. It is critical to identify metastasis enabling genes and understand how they are responsible for inducing specific aspects of the metastatic phenotype to allow for improved clinical detection and management. Protein kinase C epsilon (PKC epsilon), a member of a family of serine/threonine protein kinases, is a transforming oncogene that has been reported to be involved in cell invasion and motility. In this study, we investigated the role of PKC epsilon in breast cancer development and progression. High-density tissue microarray analysis showed that PKC epsilon protein was detected in 73.6% (106 of 144) of primary tumors from invasive ductal breast cancer patients. Increasing PKCe staining intensity was associated with high histologic grade (P = 0.0206), positive Her2/neu receptor status (P = 0.0419), and negative estrogen (P = 0.0026) and progesterone receptor status (P = 0.0008). Kaplan-Meier analyses showed that PKC epsilon was significantly associated with poorer disease-free and overall survival (log-rank, P = 0.0478 and P = 0.0414, respectively). RNA interference of PKCe in MDA-MB231 cells, an aggressive breast cancer cell line with elevated PKC epsilon levels, resulted in a cell phenotype that was significantly less proliferative, invasive, and motile than the parental or the control RNA interference transfectants. Moreover, in vivo tumor growth of small interfering RNA-PKC epsilon MDA-MB231 clones was retarded by a striking 87% (P < 0.05) and incidence of lung metastases was inhibited by 83% (P < 0.02). PKC epsilon-deficient clones were found to have lower RhoC GTPase protein levels and activation. Taken together, these results revealed that PKC epsilon plays a critical and causative role in promoting an aggressive metastatic breast cancer phenotype and as a target for anticancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available