4.7 Article

Long-term mixed chimerism after immunologic conditioning and MHC-mismatched stem-cell transplantation is dependent on NK-cell tolerance

Journal

BLOOD
Volume 106, Issue 6, Pages 2215-2220

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2005-04-1391

Keywords

-

Categories

Ask authors/readers for more resources

T-cell tolerance is mandatory for major histocompatibility complex (MHC)mismatched stem-cell transplantation without cytoreduction. Here, we used a cytotoxicity assay based on the infusion of differentially carboxyfluorescein succinimidyl ester (CFSE)-labeled syngeneic and donor splenocytes to determine the survival of donor cells in vivo. In vivo cytotoxicity data showed that treatment with anti-CD40 ligand monoclonal antibody in combination with a low dose of MHC-mismatched bone marrow cells was sufficient to induce T-cell tolerance. However, CFSE-labeled donor cells were still eliminated. A similar elimination pattern was observed in T-cell and natural killer T-cell (NKT-cell)-deficient mice, suggesting the involvement of natural killer (INK) cells. Indeed, in vivo NK-cell depletion resulted in a prolonged survival of CFSE-labeled donor cells, confirming the role of NK cells in this process. Transplantation of a megadose of MHC-mismatched bone marrow cells was required for a complete survival of CFSE-labeled donor cells. This NK-cell tolerance was donor specific and was associated with mixed chimerism. Additional NK-cell depletion significantly enhanced engraftment and allowed long-term chimerism after transplantation of a relatively low dose of donor bone marrow cells. These data demonstrate the importance of NK cells in the rejection of MHC-mismatched hematopoietic cells and may explain the high numbers of bone marrow cells required for transplantation over MHC barriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available