4.8 Article

An improved coating for the isolation and quantitation of interferon-γ in spiked plasma using surface plasmon resonance (SPR)

Journal

BIOSENSORS & BIOELECTRONICS
Volume 21, Issue 3, Pages 474-482

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2004.11.008

Keywords

surface plasmon resonance; biosensor; interferon-gamma; plasma; dextran hydrogel; immobilisation

Ask authors/readers for more resources

A study was initiated to investigate the use of surface plasmon resonance (SPR) for the detection in plasma of a high pI model protein, recombinant human interferon-gamma (IFN-gamma). Initially a number of self-assembled monolayers (SAMs) and hydrogel-derivatised SAM-coatings were characterised for the adsorptive and desorptive properties of plasma components. Next a monoclonal anti-IFN-gamma antibody, MD-2, was covalently attached to dextran-modified mercaptoundecanoic acid surfaces that per-formed best. On coatings consisting of carboxyl-modified dextran (CMD) a difference in interaction behaviour was observed when IFN-gamma was injected in either buffer or diluted plasma. During the injection of IFN-gamma in buffer, an acceleration of the interaction process was observed and the signal continued to increase after the injection plug had passed. Upon injection of diluted plasma spiked with IFN-gamma, the response increased without acceleration of the binding process. After the injection was finished, some of the bound material desorbed as expected, resulting in a signal decrease. On non-charged dextrans, the interaction between the antibody-modified surface and IFN-gamma in either plasma or buffer was similar. During sample injection the response increased with a binding rate depending on the concentration of IFN-gamma present in solution. When the injection was finished, some of the bound material was washed away from the surface and only a minor contribution of non-specific adsorbed plasma components was noticeable. From the coatings tested, the non-modified dextran-coated SPR sensor disks prove to be best suited for the detection of IFN-gamma in complex matrices like plasma. The interaction of IFN-gamma in both diluted plasma and buffer is comparable and concentrations of IFN-gamma of 250 ng ml(-1) and higher can be detected in both buffer and 100 x -diluted plasma. The non-specific adsorption of plasma components is low, whereas the specific IFN-gamma response is relatively high. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available