4.6 Article

Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 37, Pages 32193-32199

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M503645200

Keywords

-

Ask authors/readers for more resources

Although cell surface chondroitin sulfate ( CS) is regarded as an auxiliary receptor for binding of herpes simplex virus to cells, and purified CS chain types A, B, and C are known to interfere poorly or not at all with the virus infection of cells, we have found that CS type E (CS-E), derived from squid cartilage, exhibited potent antiviral activity. The IC50 values ranged from 0.06 to 0.2 mu g/ml and substantially exceeded the antiviral potency of heparin, the known inhibitor of virus binding to cells. Furthermore, in mutant gro2C cells that express CS but not heparan sulfate, CS-E showed unusually high anti-herpes virus activity with IC50 values of < 1 ng/ml. Enzymatic degradation of CS-E with chondroitinase ABC abolished its antiviral activity. CS-E inhibited the binding to cells of the purified virus attachment protein gC. A direct interaction of gC with immobilized CS-E and inhibition of this binding by CS-E oligosaccharide fragments greater than octasaccharide were demonstrated. Likewise, the gro2C-specific CS chains interfered with the binding of viral gC to these cells and were found to contain a considerable proportion (13%) of the E-disaccharide unit, suggesting that this unit is an essential component of the CS receptor for herpes simplex virus on gro2C cells and that the antiviral activity of CS-E was due to interference with the binding of viral gC to a CS-E-like receptor on the cell surface. Knowledge of the determinants of antiviral properties of CS-E will help in the development of inhibitors of herpes simplex virus infections in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available