4.7 Article

Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 116, Issue 5, Pages 768-773

Publisher

WILEY
DOI: 10.1002/ijc.21117

Keywords

lung cancer; DNA repair; single nucleotide polymorphism; nucleotide excision repair; polycyclic aromatic hydrocarbon

Categories

Ask authors/readers for more resources

The lung cancer mortality rate in Xuan Wei County is among the highest in China and has been attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NER) plays a key role in reversing DNA damage from exposure to environmental carcinogens, such as PAHs, that form bulky DNA adducts. We studied single nucleotide polymorphisms (SNPs) and their corresponding haplotypes in 6 genes (ERCC1, ERCC2/XPD, ERCC4/XPF, ERCC5/XPG, RAD23B and XPC) involved in NER in a population-based case-control study of lung cancer in Xuan Wei. A total of 122 incident primary lung cancer cases and 122 individually matched controls were enrolled. Three linked SNPs in ERCC2 were associated with lung cancer with similar ORs; e.g., persons with the Gin allele at codon 751 had a 60% reduction of lung cancer (OR = 0.40, 95% CI 0.18-0.89). Moreover, one haplotype in ERCC2 was associated with a decreased risk of lung cancer (OR = 0.40, 95% CI 0.19-0.85) compared to the most common haplotype. In addition, subjects with one or 2 copies of the Val allele at codon 249 of RAD23B had a 2-fold increased risk of lung cancer (OR = 1.91, 95% CI 1.12-3.24). In summary, our results suggest that genetic variants in genes involved in the NER pathway may play a role in lung cancer susceptibility in Xuan Wei. However, due to the small sample size, additional studies are needed to evaluate these associations within Xuan Wei and in other populations with substantial environmental exposure to PAHs. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available