4.8 Article

Spiroplasma swim by a processive change in body helicity

Journal

CELL
Volume 122, Issue 6, Pages 941-945

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2005.07.004

Keywords

-

Ask authors/readers for more resources

Microscopic organisms must rely on very different strategies than their macroscopic counterparts to swim through liquid. To date, the best understood method for prokaryotic swimming employs the rotation of flagella. Here, we show that Spiroplasma, tiny helical bacteria that infect plants and insects, use a very different approach. By measuring cell kinematics during free swimming, we find that propulsion is generated by the propagation of kink pairs down the length of the cell body. A processive change in the helicity of the body creates these waves and enables directional movement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available