4.5 Letter

Molecular structure and OH-stretch spectra of liquid water surface

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 38, Pages 17771-17774

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp052819a

Keywords

-

Ask authors/readers for more resources

Molecular dynamics simulations are used to investigate typical coordination shells of molecules in the liquid water surface, for two potential energy surfaces. The major undercoordinated species found in the surface include three-coordinated H2O with either a dangling-H or a dangling-O atom and two-coordinated H2O with one hydrogen bond via H, and another via O. Vibrational signatures of the different coordinations are calculated. The 3400 cm(-1) band in the surface sum frequency generation (SFG) spectrum is assigned to four-coordinated molecules within the surface layer. The low-frequency wing of the OH-stretch band, near 3200 cm(-1) in the SFG spectrum, is proposed to be due to collective excitations of a relatively small number of intermolecularly coupled O-H bond vibrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available