3.8 Article

Finitely connected vector spin systems with random matrix interactions

Journal

JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volume 38, Issue 39, Pages 8289-8317

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0305-4470/38/39/001

Keywords

-

Ask authors/readers for more resources

We use finite connectivity equilibrium replica theory to solve models of finitely connected unit-length vectorial spins, with random pair-interactions which are of the orthogonal matrix type. Finitely connected spin models, although still of a mean-field nature, can be regarded as a convenient level of description in between fully connected and finite-dimensional ones. Since the spins are continuous and the connectivity c remains finite in the thermodynamic limit, the replica-symmetric order parameter is a functional. The general theory is developed for arbitrary values of the dimension d of the spins, and arbitrary choices of the ensemble of random orthogonal matrices. We calculate phase diagrams and the values of moments of the order parameter explicitly for d = 2 (finitely connected XY spins with random chiral interactions) and for d = 3 (finitely connected classical Heisenberg spins with random chiral interactions). Numerical simulations are shown to support our predictions quite satisfactorily.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available