4.5 Article

Suppression of macrophage responses to bacterial lipopolysaccharide (LPS) by secretory leukocyte protease inhibitor (SLPI) is independent of its anti-protease function

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.bbamcr.2005.07.006

Keywords

macrophage; SLPI mutant; lipopolysaccharide; inflammation

Funding

  1. NIGMS NIH HHS [GM061710] Funding Source: Medline

Ask authors/readers for more resources

Secretory leukocyte protease inhibitor (SLPI), a potent serine protease inhibitor, has been shown to suppress macrophage responses to bacterial lipopolysaccharide (LPS). SLPI contains two topologically superimposable domains. Its C-terminal domain binds and inhibits target proteases. It is not clear whether SLPI's anti-protease function plays a role in the LPS-inhibitory action of SLPI. Four single amino acid substitution mutants of SLPI, M73G, M73F, M73E and M73K, were generated. Wild type SLPI is a potent inhibitor of chymotrypsin and elastase. Mutants M73G and M73F selectively lost inhibitory function towards chymotrypsin and elastase, respectively, whereas mutants M73K and M73E inhibited neither elastase nor chymotrypsin. Macrophage cell lines were established from RAW264.7 cells to stably express each SLPI mutant. Expression of the SLPI protease inhibition mutants suppressed NO and TNF production in response to LPS in a similar fashion as wild type SLPI. Expression of truncated forms of SLPI, containing only its N-terminus or its C-terminus, was similarly sufficient to confer inhibition of LPS responses. Thus, the LPS-inhibitory action of SLPI is independent of its anti-protease function. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available