4.3 Article

Pseudozyma vetiver sp nov., a novel anamorphic ustilaginomycetous yeast species isolated from the phylloplane in Thailand

Publisher

SPRINGER
DOI: 10.1007/s10482-013-9971-8

Keywords

Pseudozyma vetiver sp nov.; Anamorphic yeast; Ustilaginomycetous yeast; Phylloplane; Vetiver grass; Sugarcane; Thailand

Categories

Funding

  1. Higher Education Research Promotion and National Research University Project of Thailand
  2. office of the Higher Commission, Thailand
  3. Thailand Research Find Research-Team Promotion Grant [RTA548009]

Ask authors/readers for more resources

Three strains representing one novel yeast species were isolated from the phylloplanes of the vetiver grasses (DMKU-LV90 and DMKU-LV99(T)) and sugarcane (DMKU-SP260) collected in Thailand by leaf washing followed by a plating technique. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and the sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer region (ITS), the three strains were found to represent a single novel anamorphic ustilaginomycetous yeast species in the genus Pseudozyma. The name Pseudozyma vetiver sp. nov. is proposed for this novel species. The type strain is DMKU-LV99(T) (BCC 61021 = CBS 12824). The novel species showed phylogenetic relationships to the other members of the genus Pseudozyma and to teleomorphic fungal genera, namely Ustilago, Sporisorium and Anomalomyces in Ustilaginaceae, Ustilaginales. The three strains showed identical sequences both in the D1/D2 and ITS regions. The Pseudozyma species closest to the novel species in terms of pairwise sequence similarity in the D1/D2 region was Pseudozyma pruni but with 2.3 % nucleotide substitutions (14 nucleotide substitutions and no gaps out of 606 nt). The novel species and P. pruni differed by 10.9 % nucleotide substitutions (75 nucleotide substitutions and 31 gaps out of 691 nt) in the ITS region. The phylogenetic analysis based on the combined sequences of the ITS region and the D1/D2 region of the LSU rRNA gene showed that the novel species was found to be most closely related to Pseudozyma fusiformata but with 2.9 % nucleotide substitutions in the D1/D2 region and 7.4 % nucleotide substitutions in the ITS region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available