4.7 Article

Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle's loop (TALH) cells

Journal

MOLECULAR & CELLULAR PROTEOMICS
Volume 4, Issue 10, Pages 1445-1458

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.M400184-MCP200

Keywords

-

Ask authors/readers for more resources

Epithelial cells of the thick ascending limb of Henle's loop (TALH cells) play a major role in the urinary concentrating mechanism. They are normally exposed to variable and often very high osmotic stress, which is particularly due to high sodium and chloride reabsorption and very low water permeability of the luminal membrane. It is already established that elevation of the activity of aldose reductase and hence an increase in intracellular sorbitol are indispensable for the osmotic adaptation and stability of the TALH cells. To identify new molecular factors potentially associated with the osmotic stress-resistant phenotype in kidney cells, TALH cells exhibiting low or high levels of resistance to osmotic stress were characterized using proteomic tools. Two-dimensional gel analysis showed a total number of 40 proteins that were differentially expressed in TALH cells under osmotic stress. Twenty-five proteins were overexpressed, whereas 15 proteins showed a down-regulation. Besides the sorbitol pathway enzyme aldose reductase, whose expression was 15 times increased, many other metabolic enzymes like glutathione S-transferase, malate dehydrogenase, lactate dehydrogenase, alpha enolase, glyceraldehyde-3-phosphate dehydrogenase, and triose-phosphate isomerase were up-regulated. Among the cytoskeleton proteins and cytoskeleton-associated proteins vimentin, cytokeratin, tropomyosin 4, and annexins I, II, and V were up-regulated, whereas tubulin and tropomyosins 1, 2, and 3 were downregulated. The heat shock proteins alpha-crystallin chain B, HSP70, and HSP90 were found to be overexpressed. In contrast to the results in oxidative stress the endoplasmic reticulum stress proteins like glucose-regulated proteins (GRP78, GRP94, and GRP96), calreticulin, and protein-disulfide isomerase were down-regulated under hypertonic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available