4.7 Article

A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 68, Issue 6, Pages 774-778

Publisher

SPRINGER
DOI: 10.1007/s00253-005-1948-8

Keywords

-

Ask authors/readers for more resources

A rapid and efficient method to perform site-directed mutagenesis based on an improved version of overlap extension by polymerase chain reaction (OE-PCR) is demonstrated in this paper. For this method, which we name modified (M)OE-PCR, there are five steps: (1) synthesis of individual DNA fragments of interest (with average 20-bp overlap between adjacent fragments) by PCR with high-fidelity pfu DNA polymerase, (2) double-mixing (every two adjacent fragments are mixed to implement OE-PCR without primers), (3) pre-extension (the teams above are mixed to obtain full-length reassembled DNA by OE-PCR without primers), (4) synthesis of the entire DNA of interest by PCR with outermost primers and template DNA from step 3, (5) post-extension (ten cycles of PCR at 72 degrees C for annealing and extension are implemented). The method is rapid, simple and error-free. It provides an efficient choice, especially for multiple-site mutagenesis of DNAs; and it can theoretically be applied to the modification of any DNA fragment. Using the MOE-PCR method, we have successfully obtained a modified sam1 gene with eight rare codons optimized simultaneously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available