4.8 Article

Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold

Journal

BIOMATERIALS
Volume 26, Issue 28, Pages 5668-5676

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.02.030

Keywords

chondrocytes; hyaluronic acid; arthritis; apoptosis; metalloproteinases

Ask authors/readers for more resources

Hyaluronic-acid-based biomaterials used for cartilage repair allow the expression of specific extracellular matrix molecules by human chondrocytes grown onto them. We investigated whether these biomaterials could also create an environment in which the cells downregulate the expression of some catabolic factors. Chondrocytes were isolated from human articular cartilage obtained from the knees of patients with a history of trauma. First, the cells were expanded in monolayers and then they were seeded on a hyaluronic-acid derivative scaffold. Constructs and surnatants were collected and analysed at 1.3, 7, 14 and 21 days after seeding. Immunohistochemical analysis for CD44 and caspase was carried Out on paraffin-em bedded sections. The Tunnel method LIS used to identity chondrocyte apoptosis status. Secretion of MMP-1 and MMP-13 in the surnatants of the cells grown onto the biomaterial was measured by enzyme-linked immunosorbent assay. Nitric oxide (NO) production was evaluated by estimating the stable NO metabolite nitrite by the Griess method. A real-time RT-PCR analysis was performed on the constructs to evaluate the expression of type I and II collagens, aggrecan, Sox-9, MMP-1 and MMP-13 mRNAs at the different experimental times evaluated. Decreased levels of metalloproteinases and nitric oxide were observed in the surnatants of chondrocytes grown onto the hyaluronan-based scaffold. This was also confirmed by real-time PCR analysis which showed that the cells expressed the specific differentiated phenotype downregulating the expression of some catabolic molecules. Cells apoptosis decreased during the culture period, which further supported the biochemical data. The ability of the hyaluronan scaffold to reduce the expression and production of molecules involved in cartilage degenerative diseases indicates its use to treat early lesions of osteoarthritic patients. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available