4.6 Article

Ataxia telangiectasia mutated (Atm) knockout mice as a model of osteopenia due to impaired bone formation

Journal

BONE
Volume 37, Issue 4, Pages 497-503

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2005.05.012

Keywords

premature aging syndrome; animal models; mesenchymal stem cells; knockout

Ask authors/readers for more resources

ATM is a member of the PI-3 kinase protein family, encoded by the gene, ATM, responsible for ataxia telangiectasia (AT). AT is recognized as a genomic instability syndrome, sharing accelerated senescence symptoms in human and mouse. Here, we present evidence that the bone phenotype of Atm knockout (AtmKO) mice is similar to that observed in disuse and/or aging syndromes. A significant decrease in 3-dimensional bone volume fraction (BV/TV) of the fifth lumbar vertebra was observed in AtmKO mice by mu CT, compared with heterozygous control mice at 10 weeks of age. Bone histomorphornetry revealed that both BFR/BS and Oc.S/BS were significantly decreased in KO mice. To determine the cellular basis of this bone phenotype, we employed in vitro osteoclastogenesis and colony formation assays using bone marrow cells derived from KO and control mice. There was no difference in osteoclast formation in ex vivo cultures. CFU-F was markedly reduced in AtmKO-derived cultures compared with control mice, whereas differentiation of calvaria-derived osteoblasts did not differ between the genotypes. Furthermore, expression levels of IGF 1R were significantly decreased, and p38 was aberrantly phosphorylated in marrow stromal cells from AtmKO mice. These results indicate that the pathogenesis of the osteopenic phenotype in AtmKO mice is similar to that of disuse and/or aging syndromes and is caused, at least in part, by a stein cell defect due to lack of IGF signaling. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available