4.3 Article Proceedings Paper

Application of computational fluid dynamics analysis for rotating machinery - Part II: Labyrinth seal analysis

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1808426

Keywords

-

Ask authors/readers for more resources

Labyrinth seals are used in various kinds of turbo machines to reduce internal leakage flow. The working fluid, or the gas passing through the rotor shaft labyrinth seals, often generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotordynamic force components for predicting the instability of the rotor-bearing-seal system. The major goals of this research were to calculate the rotordynamic force of a labyrinth seals utilizing a commercial CFD program and to further compare those results to an existing bulk flow computer program currently used by major US machinery manufacturers. The labyrinth seals of a steam turbine and a compressor eye seal are taken as objects of analysis. For each case, a 3D model with eccentric rotor was solved to obtain the rotordynamic force components. The leakage flow and rotor dynamics force predicted by CFX TASCFlow are compared with the results of the existing bulk flow analysis program DYNLAB. The results show that the bulk flow program gives a pessimistic prediction of the destabilizing forces for the conditions under investigation. Further research work will be required to fully understand the complex leakage flows in turbo machinery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available