4.7 Article

Resonantly absorbing one-dimensional photonic crystals

Journal

PHYSICAL REVIEW E
Volume 72, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.046604

Keywords

-

Ask authors/readers for more resources

A compact theoretical description of the effects of dissipation on the propagation of light waves through a multilayer periodic mirror built from resonant absorbing atoms is presented. Depending on the lattice periodicity, ultranarrow photonic gaps, weak polaritonic gaps, as well as rather atypical gap structures may be observed. Because of the atom's absorption line shape Bloch gap modes may acquire quite a cumbersome structure which is thoroughly studied here or which may even disappear when dissipation becomes sufficiently strong. The same approach well applies also to resonantly absorbing photonic crystals based on excitonic resonances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available