4.7 Article

In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

Journal

ANTIVIRAL RESEARCH
Volume 92, Issue 2, Pages 329-340

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.antiviral.2011.09.001

Keywords

2 '-Deoxy-2 '-fluorocytidine; Fluorodeoxyribonucleosides; H5N1 avian influenza virus; BALB/c mouse; Pandemic H1N1 virus

Funding

  1. Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
  2. Southern Research Institute [N01-AI-30063]
  3. Virology Branch, National Institute of Allergy and Infectious Diseases
  4. Department of Health and Human Services [N01-AI-30048]

Ask authors/readers for more resources

Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 to 4.61 mu M, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2'FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p = 0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid X 8) beginning 24 h before virus exposure. At these doses, 70-80% of the mice were protected from death due to virus infection (p = 0.0005, p = 0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p = 0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2'-deoxy-5-fluorocytidine and 2'-deoxy-2',2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg/kg/d (bid X 5) beginning 24 h before virus exposure), 2'-FdC also significantly enhanced survival of H1N1-infected mice (50%, p = 0.038) similar to the results obtained in the H5N1 infection model using a similar dosing regimen (50%, p < 0.05). Given the demonstrated in vitro and in vivo inhibition of avian influenza virus replication, 2'-FdC may qualify as a lead compound for the development of agents treating influenza virus infections. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available