4.5 Article

Calpain-mediated truncation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H2O2 toxicity

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 95, Issue 2, Pages 466-474

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2005.03383.x

Keywords

calpain; collapsin response-mediated protein-4; dihydropyrimidinase-like protein 3; dihydropyrimidinase related protein 3; N-methyl-D-aspartate; reactive oxygen species

Ask authors/readers for more resources

Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of 62 kDa and 60 kDa. Pre-treatment of cell cultures with calpain inhibitors, but not caspase 3 inhibitor, before exposure to NMDA or H2O2 completely blocked the appearance of the doublet, suggesting calpain-mediated truncation. Furthermore, in vitro digestion of DPYSL3 in cell lysate with purified calpain revealed a cleavage product identical to that observed in NMDA- and H2O2-treated cells, and its appearance was blocked by calpain inhibitors. Analysis of the DPYSL3 protein sequence revealed a possible cleavage site for calpain (Val-Arg-Ser) on the C-terminus of DPYSL3. Collectively, these studies demonstrate for the first time that DPYSL3 is a calpain substrate. The physiological relevance of the truncated DPYSL3 protein remains to be determined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available