4.6 Article

Metabolic and cellular plasticity in white adipose tissue II:: role of peroxisome proliferator-activated receptor-α

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00010.2005

Keywords

transdifferentiation

Funding

  1. NIDDK NIH HHS [DK-062292, DK-066505] Funding Source: Medline

Ask authors/readers for more resources

Chronic activation of adipocyte beta-adrenergic receptors induces remodeling of white adipose tissue (WAT) that includes a transient inflammatory response followed by mitochondrial biogenesis, induction of fatty acid oxidation genes, and elevation of tissue oxidative metabolism. Gene profiling experiments of WAT during remodeling induced by the beta(3)-adrenergic receptor agonist CL-316,243 (CL) suggested that peroxisome proliferator-activated receptor-alpha (Ppara), which is upregulated by CL, might be an important transcriptional regulator of that process. Histological, physiological, and molecular analysis of CL-induced remodeling in wild-type mice and mice lacking Ppara demonstrated that Ppara was important for inducing adipocyte mitochondrial biogenesis and upregulating genes involved in fatty acid oxidation. Furthermore, Ppara-deficient mice exhibited sustained WAT inflammation during CL treatment, indicating that upregulation of Ppara limits proinflammatory signaling during chronic lipolytic activation. Together, these data support the hypothesis that WAT remodeling is an adaptive response to excessive fatty acid mobilization whereby Ppara and its downstream targets elevate fatty acid catabolism and suppress proinflammatory signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available