4.6 Article

Fully complex extreme learning machine

Journal

NEUROCOMPUTING
Volume 68, Issue -, Pages 306-314

Publisher

ELSEVIER
DOI: 10.1016/j.neucom.2005.03.002

Keywords

feedforward neural networks; complex QAM equalization; complex extreme learning machine; complex activation function; CMRAN; CRBF; CBP

Ask authors/readers for more resources

Recently, a new learning algorithm for the feedforward neural network named the extreme learning machine (ELM) which can give better performance than traditional tuning-based learning methods for feedforward neural networks in terms of generalization and learning speed has been proposed by Huang et al. In this paper, we first extend the ELM algorithm from the real domain to the complex domain, and then apply the fully complex extreme learning machine (C-ELM) for nonlinear channel equalization applications. The simulation results show that the ELM equalizer significantly outperforms other neural network equalizers such as the complex minimal resource allocation network (CMRAN), complex radial basis function (CRBF) network and complex backpropagation (CBP) equalizers. C-ELM achieves much lower symbol error rate (SER) and has faster learning speed. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available