4.6 Article

Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry

Journal

JOURNAL OF APPLIED PHYSICS
Volume 98, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2061894

Keywords

-

Ask authors/readers for more resources

A systematic study of the shift and linewidth of the E-g Raman peak at 144 cm(-1) of anatase TiO2 nanopowders, produced by a flame aerosol technique, is here presented. The analysis was performed as a function of the crystal domain size and of the degree of oxidation. In the nanopowders, a clear contribution of the stoichiometry defects to the peak shift was evidenced, while the peak width seems to be less affected by the oxygen content. The Raman peak behavior due to size reduction has been interpreted in the framework of a phonon quantum confinement model. A critical review of the different approaches to this model, adopted in the literature to explain the behavior of the anatase Raman spectra as a function of the domain size, is presented. In particular, the hypothesis of a three-dimensional isotropic model for the dispersion relations is discussed. This analysis evidences general limits in the application of the phonon confinement model to the study and characterization of nanoparticles and nanostructured materials, showing how an uncritical use of the confinement theory can yield distorted results. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available