4.7 Article

Retroviral matrix domains share electrostatic homology: Models for membrane binding function throughout the viral life cycle

Journal

STRUCTURE
Volume 13, Issue 10, Pages 1521-1531

Publisher

CELL PRESS
DOI: 10.1016/j.str.2005.07.010

Keywords

-

Funding

  1. NIAID NIH HHS [AI54167] Funding Source: Medline

Ask authors/readers for more resources

The matrix domain (MA) of Gag polyproteins performs multiple functions throughout the retroviral life cycle. MA structures have an electropositive surface patch that is implicated in membrane association. Here, we use computational methods to demonstrate that electrostatic control of membrane binding is a central characteristic of all retroviruses. We are able to explain a wide range of experimental observations and provide a level of quantitative and molecular detail that has been inaccessible to experiment. We further predict that MA may exist in a variety of oligomerization states and propose mechanistic models for the effects of phosphoinositides and phosphorylation. The calculations provide a conceptual model for how non-myristoylated and myristoylated MAs behave similarly in assembly and disassembly. Hence, they provide a unified quantitative picture of the structural and energetic origins of the entire range of MA function and thus enhance, extend, and integrate previous observations on individual stages of the process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available