4.7 Article

Hubble Space Telescope spectroscopy of the balmer lines in Sirius B

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 362, Issue 4, Pages 1134-1142

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2966.2005.09359.x

Keywords

stars : abundances; stars : individual : Sirius B; white dwarfs; ultraviolet : stars

Ask authors/readers for more resources

Sirius B is the nearest and brightest of all white dwarfs, but it is very difficult to observe at visible wavelengths due to the overwhelming scattered light contribution from Sirius A. However, from space we can take advantage of the superb spatial resolution of the Hubble Space Telescope (HST) to resolve the A and B components. Since the closest approach in 1993, the separation between the two stars has become increasingly favourable and we have recently been able to obtain a spectrum of the complete Balmer line series for Sirius B using the HST Space Telescope Imaging Spectrograph (STIS). The quality of the STIS spectra greatly exceeds that of previous ground-based spectra, and can be used to provide an important determination of the stellar temperature (Teff = 25 193 K) and gravity (log g = 8.556). In addition, we have obtained a new, more accurate, gravitational redshift of 80.42 +/- 4.83 km s(-1) for Sirius B. Combining these results with the photometric data and the Hipparcos parallax, we obtain new determinations of the stellar mass for comparison with the theoretical mass-radius relation. However, there are some disparities between the results obtained independently from log g and the gravitational redshift which may arise from flux losses in the narrow 50 x 0.2 arcsec(2) slit. Combining our measurements of T-eff and log g with the Wood evolutionary mass-radius relation, we obtain a best estimate for the white dwarf mass of 0.978 M circle dot. Within the overall uncertainties, this is in agreement with a mass of 1.02 M circle dot obtained by matching our new gravitational redshift to the theoretical mass-radius relation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available