4.7 Review

Exploiting Oxidative Microenvironments in the Body as Triggers for Drug Delivery Systems

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 21, Issue 5, Pages 730-754

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2013.5754

Keywords

-

Funding

  1. NIH [DP 2OD006499]
  2. KACST through the KACST-UCSD Center of Excellence in Nanomedicine

Ask authors/readers for more resources

Significance: Reactive oxygen species and reactive nitrogen species (ROS/RNS) play an important role in cell signaling pathways. However, the increased production of these species may disrupt cellular homeostasis, giving rise to pathological conditions. Biomaterials that are responsive to ROS/RNS can be strategically used to specifically release therapeutics and diagnostic agents to regions undergoing oxidative stress. Recent Advances: Many nanocarriers intended to exploit redox micro-environments as triggers for drug release, summarized and compared in this review, have recently been developed. We describe these carriers' chemical structures, strategies for payload protection and oxidation-selective release, and ROS/RNS sensitivity as tested in initial studies. Critical Issues: ROS/RNS are unstable, so reliable measures of their concentrations in various conditions are scarce. Combined with the dearth of materials shown to respond to physiologically relevant levels of ROS/RNS, evaluations of their true sensitivity are difficult. Future Directions: Oxidation-responsive nanocarriers developed thus far show tremendous potential for applicability in vivo; however, the sensitivity of these chemistries needs to be fine tuned to enable responses to physiological levels of ROS and RNS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available