4.7 Article

Cannabinoid Receptors Couple to NMDA Receptors to Reduce the Production of NO and the Mobilization of Zinc Induced by Glutamate

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 19, Issue 15, Pages 1766-U140

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.5100

Keywords

-

Funding

  1. MSC [2011-014]
  2. MINECO [SAF2012-34991, FIS PI11-01704]

Ask authors/readers for more resources

Aims: Overactivation of glutamate N-methyl-D-aspartate receptor (NMDAR) increases the cytosolic concentrations of calcium and zinc, which significantly contributes to neural death. Since cannabinoids prevent the NMDAR-mediated increase in cytosolic calcium, we investigated whether they also control the rise of potentially toxic free zinc ions, as well as the processes implicated in this phenomenon. Results: The cannabinoid receptors type 1 (CNR1) and NMDARs are cross-regulated in different regions of the nervous system. Cannabinoids abrogated the stimulation of the nitric oxide-zinc pathway by NMDAR, an effect that required the histidine triad nucleotide-binding protein 1 (HINT1). Conversely, NMDAR antagonism reduced the analgesia promoted by the CNR1 agonist WIN55,212-2 and impaired its capacity to internalize CNR1s. At the cell surface, CNR1s co-immunoprecipitated with the NR1 subunits of NMDARs, an association that diminished after the administration of NMDA in vivo or as a consequence of neuropathic overactivation of NMDARs, both situations in which cannabinoids do not control NMDAR activity. Under these circumstances, inhibition of protein kinase A (PKA) restored the association between CNR1s and NR1 subunits, and cannabinoids regained control over NMDAR activity. Notably, CNR1 and NR1 associated poorly in HINT1(-/-) mice, in which there was little cross-regulation between these receptors. Innovation: The CNR1 can regulate NMDAR function when the receptor is coupled to HINT1. Thus, internalization of CNR1s drives the co-internalization of the NR1 subunits, neutralizing the overactivation of NMDARs. Conclusion: Cannabinoids require the HINT1 protein to counteract the toxic effects of NMDAR-mediated NO production and zinc release. This study situates the HINT1 protein at the forefront of cannabinoid protection against NMDAR-mediated brain damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available