4.7 Article

A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization

Journal

DEVELOPMENTAL CELL
Volume 9, Issue 4, Pages 565-571

Publisher

CELL PRESS
DOI: 10.1016/j.devcel.2005.08.014

Keywords

-

Funding

  1. NIGMS NIH HHS [GM068957] Funding Source: Medline

Ask authors/readers for more resources

Cellular polarization is often a response to distinct extracellular or intracellular cues, such as nutrient gradients or cortical landmarks. However, in the absence of such cues, some cells can still select a polarization axis at random. Positive feedback loops promoting localized activation of the GTPase Cdc42p are central to this process in budding yeast. Here, we explore spontaneous polarization during bud site selection in mutant yeast cells that lack functional landmarks. We find that these cells do not select a single random polarization axis, but continuously change this axis during the G1 phase of the cell cycle. This is reflected in traveling waves of activated Cdc42p which randomly explore the cell periphery. Our integrated computational and in vivo analyses of these waves reveal a negative feedback loop that competes with the aforementioned positive feedback loops to regulate Cdc42p activity and confer dynamic responsiveness on the robust initiation of cell polarization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available