4.6 Article

Irradiation-induced amorphization processes in nanocrystalline solids

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 81, Issue 5, Pages 1083-1088

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-004-2960-z

Keywords

-

Ask authors/readers for more resources

A theoretical model is suggested which describes irradiation-induced amorphization in nanocrystalline solids, using the rate theory approach. In the framework of the model, interfaces (grain boundaries) cause the two basic effects on irradiation-induced damage and amorphization processes in nanocrystalline solids where the volume fraction of the interfacial phase is extremely large. First, amorphization is enhanced in nanocrystalline solids, because high-density ensembles of interfaces essentially contribute to the total energy of the crystalline state and thereby provide a shift in the energetics of amorphization. Second, interfaces serve as effective sinks of irradiation-produced point defects and thereby hamper amorphization driven by defect accumulation. The competition between these effects is described by kinetic equations for densities of point defects in nanoscale grains in nanocrystalline solids under irradiation treatment. This competition is shown to be responsible for the specific behavior of irradiated nanocrystalline solids, which is different from that of their coarse-grained counterparts. The suggested model accounts for the experimental data reported in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available