4.7 Article

Influence of dispersion on the resonant interaction between three incoherent waves

Journal

PHYSICAL REVIEW E
Volume 72, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.046606

Keywords

-

Ask authors/readers for more resources

We study the influence of group-velocity dispersion (or diffraction) on the coherence properties of the parametric three-wave interaction driven from an incoherent pump wave. We show that, under certain conditions, the incoherent pump may efficiently amplify a signal wave with a high degree of coherence, in contrast with the usual kinetic description of the incoherent three-wave interaction. The group-velocity dispersion is shown to be responsible for a spectral filtering process, in which the coherence of the generated signal increases, as the coherence of the pump wave decreases. As a result, the coherence acquired by the signal in the presence of an incoherent pump, is higher than that acquired in the presence of a fully coherent pump. The mechanism underlying this intriguing result is based on the emergence of a mutual coherence between the incoherent pump and the generated idler wave. We calculate explicitly the degree of mutual coherence between the pump and idler waves and show that the two incoherent waves become completely correlated in the full incoherent regime of interaction. The theory is in quantitative agreement with the numerical simulations. To motivate the experimental confirmation of our theory, we characterize the dispersion properties of an actual quadratic nonlinear optical crystal in which the process of signal coherence enhancement induced by pump incoherence may be studied experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available