4.7 Article

Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 123, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2013256

Keywords

-

Ask authors/readers for more resources

The finite-temperature string method proposed by E, [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)] is a very effective way of identifying transition mechanisms and transition rates between metastable states in systems with complex energy landscapes. In this paper, we discuss the theoretical background and algorithmic details of the finite-temperature string method, as well as the application to the study of isomerization reaction of the alanine dipeptide, both in vacuum and in explicit solvent. We demonstrate that the method allows us to identify directly the isocommittor surfaces, which are approximated by hyperplanes, in the region of configuration space where the most probable transition trajectories are concentrated. These results are verified subsequently by computing directly the committor distribution on the hyperplanes that define the transition state region. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available