4.7 Review

Coordination of DNA-PK Activation and Nuclease Processing of DNA Termini in NHEJ

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 14, Issue 12, Pages 2531-2543

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/ars.2010.3368

Keywords

-

Funding

  1. NIH [R01CA82741, R21CA128628]

Ask authors/readers for more resources

DNA double-strand breaks (DSB), particularly those induced by ionizing radiation (IR), are complex lesions that can be cytotoxic if not properly repaired. IR-induced DSB often have DNA termini modifications, including thymine glycols, ring fragmentation, 3'-phosphoglycolates, 5'-hydroxyl groups, and abasic sites. Non-homologous end joining (NHEJ) is a major pathway responsible for the repair of these complex breaks. Proteins involved in NHEJ include the Ku 70/80 heterodimer, DNA-PKcs, processing proteins including Artemis and DNA polymerases mu and lambda, XRCC4, DNA ligase IV, and XLF. We will discuss the role of the physical and functional interactions of DNA-PK as a result of activation, with an emphasis on DNA structure, chemistry, and sequence. With the diversity of IR induced DSB, it is becoming increasingly clear that multiple DNA processing enzymes are likely necessary for effective repair of a break. We will explore the roles of several important processing enzymes, with a focus on the nuclease Artemis and its role in processing diverse DSB. The effect of DNA termini on both DNA-PK and Artemis activity will be analyzed from a structural and biochemical view. Antioxid. Redox Signal. 14, 2531-2543.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available